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1. EXECUTIVE SUMMARY. 
 
1.1. The Planning Model based on Projection Methodology (PM2). 
 

The U.S. Army Materiel Systems Analysis Activity (AMSAA) has developed a 
new reliability growth planning model.  The new model is referred to as the Planning 
Model based on Projection Methodology, or PM2.  PM2 can: (1) aid in constructing a 
reliability growth planning curve over a developmental test program useful to program 
management; (2) serve as a baseline against which reliability assessments can be 
compared and; (3) highlight the need to management when reallocation of resources is 
necessary.    
 
1.2. PM2 Assumptions. 

 
There are a number of reasonable assumptions associated with PM2.  The first 

assumption is that there are a large number of potential failure modes.  As a rule of 
thumb, the potential number of failure modes should be at least five times the number of 
failure modes that are expected to be surfaced during the planned test period.  Second, 
each failure mode time to first occurrence is assumed exponential.  Finally, it is assumed 
that each failure mode occurs independently and causes system failure. 
 
1.3. PM2 Limitations. 

 
All reliability growth planning models have limitations.  The first limitation 

associated with PM2 is that the portion of testing utilized for reliability growth planning 
should be reflective of the Operation Mode Summary/Mission Profile (OMS/MP).  This 
limitation is not unique to PM2 – it is a limitation associated with all reliability growth 
planning models.  Second, one must postulate a baseline test schedule.  That is, one must 
determine the number of hours, or miles, per unit per month over the test period.  Finally, 
fix implementation periods must be specified within the planned test schedule.   
 
1.4. PM2 Benefits. 
 

There are a number of benefits associated with the new planning model.  PM2 is 
unique in comparison to other reliability growth planning models in that it utilizes 
planning parameters that are directly influenced by program management.  Some of these 
parameters include: (1) the initial system MTBF; (2) the fraction of the initial failure rate 
addressable via corrective action (referred to as management strategy); (3) the goal 
system MTBF; (4) the average fix effectiveness of corrective actions; (5) the duration of 
developmental testing and; (6) the average delay associated with fix implementation.  A 
second benefit of PM2 is that the model can determine the impact of changes to the 
planned test schedule, and associated fix implementation periods.  Third, PM2’s 
measures of programmatic risk are not sensitive to the length of the initial test phase 
(which is a limitation of the MIL-HDBK-189 planning model).  Finally, PM2 can be 
applied to programs with limited opportunities for implementation of corrective actions. 
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1.5. Overview. 
 

In following sections of this report, exact expressions for the expected number of 
surfaced failure modes and system failure intensity as functions of test time are presented 
under the assumption that the surfaced modes are mitigated through corrective actions.  
These exact expressions depend on a large number of parameters.  Functional forms are 
derived to approximate these quantities that depend on only a few parameters.  Such 
parsimonious approximations are suitable for developing reliability growth plans and 
portraying the associated planned growth path.  Simulation results indicate that the 
functional form of the derived parsimonious approximations can adequately represent the 
expected reliability growth associated with a variety of patterns for the failure mode 
initial rates of occurrence.  A sequence of increasing MTBF target values can be 
constructed from the parsimonious MTBF projection approximation based on: (1) 
planning parameters that determine the parsimonious approximation; (2) corrective action 
mean lag time with respect to implementation and; (3) the test schedule that gives the 
number of planned Reliability, Availability, and Maintainability (RAM) test hours per 
month and specifies corrective action implementation periods. 
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2. INTRODUCTION. 
 
2.1. Background. 
 

To mature the reliability of a complex system under development it is important 
to formulate a detailed reliability growth plan.  One aspect of this plan is a depiction of 
how the system’s reliability is expected to increase over the developmental test period.  
The depicted growth path serves as a baseline against which reliability assessments can 
be compared.  Such baseline planning curves for Department of Defense (DoD) systems 
have frequently been developed in the past utilizing the assumed reliability growth 
pattern specified in Military Handbook 189 (MIL-HDBK-189) (Department of Defense, 
1981).  This growth relationship is between the reliability, expressed as the mean test 
duration between system failures and a continuous measure of test duration such as time 
or mileage.  The equation governing this growth pattern was motivated by the empirically 
derived linear relationship observed for a number of data sets by Duane (1964), between 
the developmental system cumulative failure rate and the cumulative test time when 
plotted on a log-log scale. 
 
2.2. Purpose. 
 

In this paper we obtain a non-empirical relationship between the mean test 
duration between system failures and cumulative test duration that can be utilized for 
reliability growth planning.  This relationship is derived from a fundamental relationship 
between the expected number of failure modes surfaced and the cumulative test duration.  
For convenience, we shall refer to the test duration as test time and measure the reliability 
as the mean time between system failures (MTBF).  The functional form of this 
fundamental relationship is well known and is easily established without recourse to 
empiricism (Crow, 1982).  We obtain an approximation to this relationship that is 
suitable for reliability growth planning.  One significant advantage to our approach is that 
it does not rely on an empirically derived relationship such as the Duane based approach.  
We shall show how the cumulative relationship between the expected number of 
discovered failure modes and the test time naturally gives rise to a reliability growth 
relationship between the expected system failure intensity and the cumulative test time.  
The presented approximation for the resulting growth pattern avoids a number of 
deficiencies associated with the Duane/MIL-HDBK-189 approach to reliability growth 
planning. 
 
2.3. Study Overview. 
 

In Section 3 we highlight a number of issues associated with the Duane/MIL-
HDBK-189 approach to reliability growth planning.  Section 4 develops the exact 
expected system failure intensity and parsimonious approximations suitable for reliability 
growth planning.  These functions of test time are derived from the exact and planning 
approximation relationships between the expected number of surfaced failure modes and 
the cumulative test time.  The exact relationship is expressed in terms of the number of 
potential failure modes, k, and the individual initial failure mode rates of occurrence.  
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Parsimonious approximations to this relationship are obtained.  The first approximation 
utilizes k and several additional parameters.  The second approximation discussed is the 
limiting form of the first approximation as k increases.  This approximation is suitable for 
complex systems or subsystems.  The approximations are derived through consideration 
of an MTBF projection equation.  This equation arises from considering the problem of 
estimating the system MTBF at the start of a new test phase after implementing 
corrective actions to failure modes surfaced in a preceding test phase.  This MTBF 
projection has been documented in (Ellner et al., 2004) and is described in Section 4.   

Section 5 contains simulation results.  The simulations are conducted to obtain 
actual patterns for the cumulative number of surfaced failure modes versus test time for 
random draws of initial mode failure rates from several parent populations, and for a 
geometric sequence of initial mode failure rates.  The resulting stochastic realizations are 
compared to the theoretical expected number of potential surfaced failures modes and to 
the parsimonious approximations.  Random draws for mode fix effectiveness factors 
(FEFs) (fraction reductions in initial failure mode rates of occurrence due to mitigation) 
are used to simulate corrective actions to surfaced failure modes.  Using the simulated 
corrective actions, the relationship between the expected system failure intensity and 
cumulative test time is simulated for various sets of mode initial failure rates.  This 
relationship is obtained under the assumption that the system failure intensity associated 
with a cumulative test time t reflects implementation of corrective actions to the modes 
surfaced by t with the associated randomly drawn FEFs.  The resulting system MTBF 
versus test time relationship is compared to the corresponding relationship established for 
planning purposes.   

Section 6 derives expressions for a reliability projection scale parameter that is 
utilized in the parsimonious approximations.  The projection parameter is expressed in 
terms of basic planning parameters.  The resulting MTBF approximations are compared 
to the reciprocals of the exact expected system failure intensity and stochastic realizations 
of the system failure intensity, and to MIL-HDBK-189 MTBF approximations based on 
planning parameters.  The comparisons are done for several reliability growth patterns. 

Section 7 addresses the relationship between the theoretical upper bound on the 
achievable system MTBF, termed the growth potential, and the planning parameters.  The 
projection scale parameter considered in Section 6 is then expressed in terms of planning 
parameters and the MTBF growth potential.  It is shown that the scale parameter becomes 
unrealistically large if the goal MTBF is chosen too close to the growth potential or if the 
allocated test time to grow from the initial to goal MTBF is inadequate. 

Section 8 indicates how to construct a sequence of MTBF target values that start 
at an expected or measured initial MTBF and end at the goal MTBF.  It is shown that the 
parsimonious approximation to the reciprocal of the expected system failure intensity can 
be used for this purpose in conjunction with a test schedule that specifies the expected 
monthly RAM hours to be accumulated on the units under test and the planned corrective 
action periods. 
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3. MIL-HDBK-189 IDEALIZED GROWTH CURVE. 
 
3.1. Background. 
 

The frequently referenced United States Department of Defense MIL-HDBK-189 
(Department of Defense, 1981) utilizes an idealized reliability growth pattern with failure 
intensity function )(tMρ  given by, 

1)( −= Mtt MMM
ββλρ      (1) 

Letting )(tN M  denote the number of failures by t, the corresponding expected number of 
failures by t is given by, 

( ) M
MM ttNE βλ=)(      (2) 

For planning purposes, the handbook divides the allocated test time T into p test 
phases that end at the cumulative test times Tttt p =<<< ...21 .  Reliability growth may 
occur within a test phase.  However, the MIL-HDBK-189 approach does not assume the 
growth pattern governed by Equation (1) holds within each test phase.  For example, no 
corrective actions may be applied within some test phases.  The test phases typically are 
separated by blocks of calendar time during which a significant number of corrective 
actions are implemented to failure modes surfaced in the preceding test phase.  Thus 
jumps in reliability are typically expected from test phase to test phase.  For planning, the 
handbook only assumes that Equation (2) holds at the ends of the test phases, i.e., for 

itt = .  In particular, the points with coordinates ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

iM
i t

tNE
t

))((
,  are assumed to lie on a 

straight line on a log-log plot of 
i

iM

t
tNE ))((  versus it with slope equal to Mα− .  The value 

Mα  is called the growth rate.  The parameter Mβ  that appears in Equation (2) is equal to 
Mα−1 .  The assumption in the handbook is motivated by Duane’s empirical relationship 

(Duane, 1964).  Duane observed that, for a number of data sets, the logarithm of the 
cumulative failure rate versus the logarithm of the cumulative test time tended to display 
a linear relationship.  Note, however, Duane’s observations were based on fitting straight 
lines to test data using a log-log scale and thus presumably applied to the observed 
pattern of growth during a test phase as opposed to across test phases although this is not 
addressed in (Duane, 1964).  In fact, although for planning purposes MIL-HDBK-189 
does not assume Equation (2) holds within all the test phases, the handbook does utilize a 
power law relationship for estimating reliability in a test phase, i.e., for tracking 
reliability growth within a test phase.  The use of Equation (2) for this purpose seems 
more tied to Duane’s observations. 
 
3.2. Depicting the Planned Reliability Growth. 
 

The MIL-HDBK-189 approach utilizes average MTBF values over each test 
phase to depict the planned reliability growth path.  For test phases during which no 
corrective actions are expected to be implemented this average MTBF would also be the 
instantaneous MTBF.  The one structured method presented in the handbook to obtain 
these test phase average MTBF values is based on first specifying an idealized curve that 
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satisfies Equation (2) at the end of each test phase.  The idealized curve is frequently 
determined by specifying a planned or assessed average MTBF, 1M , over the initial test 
period, the total test time over all the test phases, T, and the goal MTBF, GM , to be 
attained at T.   The growth rate Mα  can then be solved for and the constants MM αβ −=1  
and lM that appear in Equation (2) can  be obtained.  For test phase i, the average failure 
rate iφ  is defined by, 

( ) ( )
1

1)()(

−

−

−
−

=
ii

iMiM
i tt

tNEtNEφ     (3) 

The corresponding average MTBF for phase i is taken to be the reciprocal of iφ .  The 
pattern of test phase MTBF averages so obtained do not explicitly take into account 
parameters that can be directly influenced by program management.  Such parameters 
include the management strategy (MS), the average fix effectiveness factor ( dμ ), the 
corrective action lag time, and the scheduled monthly RAM test hours and corrective 
action periods.  If one explicitly takes into account these factors, the growth pattern 
exhibited by the resulting test phase MTBFs, even when displayed on a test time basis, 
will often look more irregular than the pattern of average test phase MTBFs obtained 
from the MIL-HDBK-189 approach.  In particular, this growth pattern may not be well 
represented by a pattern consistent with Equation (1). 

The reciprocal of the idealized failure intensity given in (1) is considered to be a 
representation of the overall MTBF growth trend over the test program after the first test 
phase.  Note for growth one has Mα  greater than zero.  Thus as t approaches zero the 
MTBF implied by Equation (1) approaches zero.  Therefore, for planning purposes, the 
handbook utilizes Equation (1) to represent the overall growth trend only for 1tt >  .  The 
handbook simply utilizes a constant or average failure rate, 1

11
−= Mφ , over the first test 

phase.  The constant 1φ   is chosen such that Equation (2) is satisfied for 1tt = . Doing so, it 
follows that the MTBF growth trend consistent with Equation (1) for 1tt >  and 1φ  is given 
by, 

( )
( )⎪

⎩

⎪
⎨

⎧

>−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≤≤

= −
1

1

1
1

11

1

0

tt
t
tM

ttM

tMTBF
M

M

α
α    (4) 

 
3.3. MIL-HDBK-189 Planning Model Issues. 

 
In using Equation (4) one must be careful not to automatically equate 1M  to the 

planning parameter IM , defined as the initial MTBF.  In general, 1MM I ≤ .  The two 
MTBFs should be equated only if no growth is planned over the first test phase, since 1M  
is the planned average MTBF over the initial test phase.  

The growth rate Mα  is used as a measure of programmatic risk with respect to being 
able to grow from 1M  to )(TMTBFM G =  in test time T.  The higher the Mα  relative to past 
experience the greater the risk of attaining GM .  From Equation (4) we can see that 

( )TMTBF  is a strictly increasing function of the ratio 1/ tT  and can be made as large as 
desired by making 1t  sufficiently small.  Thus for any given T, 1M , and growth rate Mα  
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one can always find a small enough 1t  such that )(TMTBF  will equal the desired value.  
This implies that Mα  as a measure of programmatic risk is only as meaningful as the 
choice of 1t .  In particular, one should guard against artificially lowering Mα  by selecting 

1t  so small that no significant amount of fix implementation is expected to occur until 
during a corrective action period that is beyond 1t .  The strong dependence of the global 
parameter Mα  on the length of the initial test phase is not a desirable attribute for 
planning purposes.  

Finally, we note that Equation (4) implies that, even with a reasonable  choice for 
1t , any value of GM  can eventually be obtained since there is no upper limit implied by 

Equation (4).  This is true even using a growth rate that appears to be reasonable based on 
past experience with similar types of systems.  However, one must keep in mind that if 
the planning curve extends over many thousands of hours, the planned growth rate may 
not be sustainable due to resource constraints besides test time and due to technological 
constraints.  Past comparable growth rates may have been estimated from test data over 
one test phase of a much shorter duration and the system may also have been relatively 
immature. 
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4.  DERIVED RELIABILITY GROWTH PATTERNS. 
 
4.1  Assumptions. 

 
The system has a large number of potential failure modes with initial rates of 

occurrence kλλ ,...,1 .  The modes are candidates for corrective action if they are surfaced 
during test.  All failure modes independently generate failures according to the 
exponential distribution and the system fails whenever a failure mode occurs.  It is also 
assumed that corrective actions do not create new failure modes. 

 
4.2  Background Information. 
 

The first step in obtaining a functional form for the expected failure intensity as a 
function of test time and planning parameters that is based on non-empirical 
considerations involves the relationship between the expected number of failure modes 
surfaced and test duration.  This relationship was considered by Crow (1982) for the case 
where test duration is continuous.   In this paper we are measuring test duration in a 
continuous fashion.  Test time will be used as a generic measure of test duration for this 
continuous case.  The relationship is easily obtained by expressing the number of 
surfaced modes by test time t as a sum of mode indicator functions.  In particular, let 

)(tIi denote the indicator function for mode i.  The indicator function takes on the value 
one if mode i occurs by t and equals zero otherwise.  The number of modes surfaced by t 
is given by, 

∑
=

=
k

i
i tItM

1

)()(      (5) 

The expected value of )(tM  is equal to, 

∑ ∑ ∑
= = =

−− −=−==
k

i

k

i

k

i

tt
i

ii eketIEt
1 1 1

)1())(()( λλμ    (6) 

This expected value function implies a functional form for the expected failure intensity 
and corresponding MTBF as a function of test time t given that corrective actions have 
been incorporated to all the failure modes surfaced by t.  One component of the expected 
failure intensity is due to the failure modes not yet surfaced by t.  This component is 
simply given by the derivative of )(tμ .  Note, 

( ) ∑
=

−=
k

i

t
i

ie
dt

td

1

λλμ      (7) 

In (Ellner et al., 2000) it is shown that the expression in (7) is the expected failure 
intensity due to all the modes not surfaced by t.  To show this observe that the failure 
intensity due to these modes can be expressed as the random variable )(tUΛ  where  

( )∑
=

−=Λ
k

i
iiU tIt

1

)(1)( λ      (8) 

The expected value of )(tUΛ is given by, 

( ) ( )
dt

tdetIEtE
k

i

k

i

t
iiiU

i )(})(1{)(
1 1

μλλ λ ==−=Λ ∑ ∑
= =

−        (9) 
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Before considering the other components of the system failure intensity, we shall 
address obtaining parsimonious approximations to the expected number of failure modes 
surfaced by t and the corresponding failure intensity due to the unsurfaced failure modes.  
The exact expressions for these quantities are given by (6) and (9).  Note that these 
expressions depend on k +1 parameters, namely the number of potential failure modes k 
and the initial failure mode rates of occurrence iλ   for ki ,...,1= . 
 
4.3  Parsimonious Approximations. 
 
4.3.1  Expected Number of Modes and its Derivative. 

 
To obtain parsimonious approximations to the expected number of modes surfaced by 

t and its derivative, we shall consider an optimization problem under the assumption that 
all corrective actions are delayed until t.  Let iN  denote the number of failures that occur 

by t due to mode i. Then 
t

Ni
i =λ̂  denotes the standard Maximum Likelihood Estimate 

(MLE) of iλ .  Consider the estimator for iλ  given by,  
)ˆ()1(ˆ~

iii avg λθλθλ ⋅−+⋅=     (10) 
where ( )iavg λ̂  denotes the arithmetic average of the k iλ̂ and ]1,0[∈θ  is chosen to minimize 

the expected sum of squared errors between iλ
~  and iλ , i.e. 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∑

=

k

i
iiE

1

2)~( λλ .  The value of q 

that solves this optimization problem can be shown to be Sθ  (Ellner et al., 2004) where 

][11

][

i

i
S

Var
ktk

Var

λλ
λ

θ
+⎟

⎠
⎞

⎜
⎝
⎛ −

⋅

=     (11) 

for ∑
=

=
k

i
i

1

λλ , 
k
λλ =  , and 

k
Var

k

i
i

i

∑
=

−
= 1

2)(
][

λλ
λ .  The estimate of iλ  given by (10) with q 

equal to Sθ  has been called the Stein estimate of  iλ  (Ellner et al., 2004).  Note this is a 
theoretical estimate in the sense that it cannot be computed from the data since it involves 
the unknown values of k, l, and ][ iVar λ .  The quantity ][ iVar λ  can also be expressed as 
follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛= ∑

=

k

i
ii kk

Var
1

2
21][ λλλ     (12) 

From the definition of iλ
~  and the fact that iN equals zero for a failure mode 

unobserved by t we have that the Stein assessment for the failure rate contribution of  a 
failure mode not observed by t is given by, 

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅−=

tk
N

Si )1(~
θλ     (13) 

Thus the Stein assessment of the failure intensity due to all the failure modes not surfaced 
by t equals, 
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where m denotes the number of surfaced modes by t and obs denotes the index set for the 
failure modes not surfaced by t.  From (11) and (12) one can show, 
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Replacing Sθ−1  in (14) by the final expression in (15) and simplifying yields, 
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Equation (16) gives the Stein assessment for the failure intensity due to all the failure 
modes not surfaced by t.  Note that m can be regarded as an estimate of the expected 
number of modes surfaced by t, i.e. )(tμ .  Additionally, in light of Equation (9), the left 

hand side of (16) can be viewed as an estimate of 
dt

td )(μ .  From (7), it follows that the 

derivative of )(tμ  at 0=t  equals l.  Finally, observe that 
t
N  in (16) is the maximum 

likelihood estimate of the initial failure rate l under the assumption that all corrective 
actions are delayed to t.  Let )(th denote 

dt
td )(μ .  Simulation results for a number of cases 

(where k and the iλ  are known) conducted in support of (Ellner et al., 2004) have 
indicated that the Stein assessment given in (16) yields good estimates of )(th  when all 
the corrective actions are delayed.  The value )(th  that is being estimated does not depend 

on the corrective action process.  Only the estimate of l given by 
t
N  depends on the 

assumption that all corrective actions are delayed until t.  Thus the right hand side of (16) 

with m and 
t
N  replaced by good approximations of )(tμ  and 

0

)(

=

=
tdt

tdμλ  respectively 

should yield a good approximation for )(th  irregardless of the corrective action process 
for the cases where the Stein estimate of )(th  given by (16) are accurate.  This suggests 
that we choose our parsimonious approximation for )(tμ , denoted by ),(tkμ  as the unique 

solution to the differential equation obtained from (16) by replacing m by )(tkμ , 
t
N  by λ , 

and ∑
∈

____

~

obsi

iλ by 
dt

td k )(μ  with initial conditions 0)0( =kμ  and λ
μ

=
=0

)(

t

k

dt
td .  For the case where 

all the iλ  are equal, one can show that ( ) ( )ttk μμ =  for all 0≥t .  Thus, in what follows we 
shall only consider the case where not all the iλ  are equal.  The solution to the resulting 
differential equation, for this case, with the specified initial conditions is, 
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( )[ ]kp
kk tkt −⋅+−⋅= βμ 11)(     (17) 

where 
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and 

k
k k

p
β
λ
⋅

=       (19) 

The solution was obtained by the method of integrating factors (Boyce et al., 1965).  The 
solution can be verified by directly substituting (17) and its derivative into the differential 
equation for )(tkμ  and noting that )(tkμ  satisfies the specified initial conditions. Observe 
that )(tkμ  can be expressed in terms of t and three constants, namely k, l and kβ .  The 

corresponding parsimonious approximation for )(th  is 
dt

td k )(μ , which we shall denote by 

)(thk . 
It is interesting to note that ( )tkμ  given by (17) is the same expression that one 

can obtain for the expected number of software bugs surfaced in execution time t given 
by the doubly stochastic exponential order model presented in (Miller, 1985) for the case 
where the initial bug occurrence rates kλλ ,,1 …  constitute a realization of a random 
sample of size k from a gamma random variable.  The density function of this random 
variable is given by, 

( ) ( ) ( )1 for 0
1

0 otherwise

kk

k
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k k

x e xf x
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⎛ ⎞
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⎧
⎪ ⋅⎪ >= ⎨Γ + ⋅⎪
⎪⎩

 

In this density function, Γ denotes the gamma function, kβ  is defined by (18), and 1+kα  
equals kp .  This result is shown in (Ellner et. al., 2000) where ( )tkμ  denotes the expected 
number of surfaced modes by time t that will be mitigated by a corrective action. 

 
4.3.2  Expected System Failure Intensity and MTBF. 
 

Next we shall consider the expected system failure intensity after t test hours and 
a corresponding parsimonious approximation, given that corrective actions are 
implemented to all the surfaced failure modes.  We shall let id  denote the fraction 
reduction in the rate of occurrence of mode i due to the corrective action (termed a fix).  
The reduction factor is termed the fix effectiveness factor (FEF) for failure mode i. Let 

)(tΛ  denote the failure intensity of the system given that fixes have been incorporated to 
all the failure modes surfaced by t.  Then, 

( )∑
=

−=Λ
k

i
iii tIdt

1

)(1)( λ     (20) 

The corresponding expected failure intensity is )(tρ  where, 

 ( ) =Λ= )()( tEtρ ( )( ) ( )∑ ∑ ∑
= = =
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This expression for the expected failure intensity was presented in (Crow, 1982). 
For reliability growth planning purposes, assessments of individual failure mode 

FEFs will not be available.  Thus, in place of )(tρ  we shall use a parsimonious 
approximation, denoted by )(tkρ , that utilizes an average fix effectiveness factor.  It 
follows from (9) that )(th−λ  is the expected failure intensity due to the failure modes 
surfaced by t prior to mitigation.  Assume these modes are mitigated with an average FEF 
of dμ .  Then the expected failure intensity due to the surfaced failure modes after 
mitigation can be approximated by ( ) ( ))(1 thd −⋅− λμ .  Thus the parsimonious 
approximation for )(tρ  will be defined as follows: 

( ) ( ) )()(1)( ththt kkdk +−⋅−= λμρ     (22) 
We also define the parsimonious MTBF approximation of ( ) 1)()( −= ttMTBF ρ  for reliability 
growth planning by ( ) 1)()( −= ttMTBF kk ρ . 

For planning, it can be useful to add a term, Aλ , to the expressions for ( )tρ  and ( )tkρ  
given by (21) and (22) respectively.  This term represents the failure rate due to all the 
failure modes that will not be corrected, even if surfaced … referred to as A-modes 
(Crow, 1982).  This term for planning purposes would be given by the quantity 
( ) λ⋅−MS1 .  However, since this term does not contribute to the difference between ( )tρ  
and ( )tkρ  we shall not consider it further in this section or Section 5. 
 It may be difficult to select a value of k for planning purposes.  For complex 
systems or subsystems it is reasonable to use the limiting forms of ( )tkμ , ( )thk , and ( )tkρ  
as ∞→k .  Consider the limit as ∞→k  of these functions.  In taking the limit we shall 
hold l fixed and assume the limit of kβ  is positive as k increases, say ( )∞∈∞ ,0β .  Under 
these conditions one can show the three functions converge to limiting functions which 
we shall denote by ( )t∞μ , ( )th∞ , and ( )t∞ρ , respectfully.  One can show, 

( ) ( )tt ⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∞

∞
∞ β

β
λμ 1ln    (23) 

and 

( ) ( ) ( ) 11 −
∞

∞
∞ ⋅+== t

dt
td

th βλ
μ    (24) 

Also, ( )t∞ρ  is given by (22) with ( )thk  replaced by ( )th∞ . 
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5.  SIMULATION. 
 
5.1  Simulation Overview. 

 
We wish to compare the parsimonious approximations to realized and expected 

reliability growth patterns with respect to a number of quantities.  To do so we shall 
generate a number of realized reliability growth patterns via simulation in Mathematica.  
We shall consider cases where the failure mode initial rates of occurrence are realizations 
of a specified parent population for several choices of the parent distribution.  We shall 
also generate reliability growth patterns for a deterministically specified sequence of 
failure mode initial rates of occurrence that have been found to be useful in representing 
initial bug rates of occurrence in software programs under development (Miller, 1985).  
The simulation consists of the following steps: 

 
(1) Specify inputs.  This includes items such as, 1. test duration, 2. the number of failure 

modes, and  3. the sequence or parent population governing the initial mode failure 
rates. 

(2) Produce mode initial failure rates.  Failure rates are either stochastically generated, or 
deterministically calculated.  In the stochastic case, failure rates are generated by 
drawing realizations of a random sample from a specified gamma, Weibull, 
lognormal or loglogistic (Meeker et al., 1998) parent population.  In the deterministic 
case, failure rates are calculated in accordance with a specified geometric sequence. 

(3) Generate mode failure times.  The mode failure times are generated via a function of 
randomly generated uniform numbers, and the mode initial failure rates.  

(4) Generate mode fix effectiveness factors.  The FEFs are generated by drawing 
realizations of a random sample from a beta distribution with mean 0.80, and 
coefficient of variation 0.10. 

(5) Examine quantities and plots of interest. 
 

5.2  Simulation Results. 
 

Results below display plots of the expected and realized number of surfaced 
failure modes for stochastic iλ  generated from a loglogistic (Figure 1), and deterministic 

iλ  calculated from a geometric sequence (Figure 3).  Also shown are plots of the 
reciprocals (i.e. MTBFs) of the expected and realized system failure intensities for 
loglogistic iλ  (Figure 2), and geometric iλ  (Figure 4).  The geometric initial mode 
failure rates are given by 

i
i ba ⋅=λ       (25) 

for ki ,...,1=  where a<0  and 10 << b .  All the displayed quantities have been averaged 
over ten replications of simulation steps (2) through (4) above. 
 The intent of the plots is to see whether the functional form of the parsimonious 
approximations are reasonably compatible with respect to (1) the expected number of 
surfaced failure modes as a function of test time, and (2) the reciprocal of the expected 
system failure intensity as a function of test time.  Corrective actions are assumed to be 
implemented to all the failure modes surfaced by t with the simulated mode fix 
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effectiveness factors.  The value of dμ  in Equation (22) is set equal to ∑
=

k

i
id

k 1

1  to 

generate the parsimonious approximations to the exact expected failure intensity and 
corresponding MTBF.  Additionally, for the results displayed below, 500,1=k  and 

110−=λ . 
 The value of the scale parameter obtained from Equation (18) does not provide 
adequate parsimonious approximations except when the parent population is gamma or 
the scale parameter is sufficiently small.  Thus for the specified k, dμ , and λ , the scale 
parameters kβ  and ∞β  of the parsimonious approximations were fitted to the exact 
expected number of surfaced failure modes function by using maximum likelihood 
estimates.  These estimates were obtained from the simulated mode first occurrence 
times.  This was accomplished by assuming the generated initial mode failure rates 

kλλ ,,1 …  represented a realization of a random sample of size k from a gamma 
distribution with scale parameter kβ  and mean k

λ .  This procedure provided a “best 
statistical fit” of the parsimonious functional approximations for ( )tμ  and ( )tρ , with 
respect to the scale parameter, over the entire planning period of interest, i.e. 10,000 
hours. 
 The parsimonious approximations for ( )tμ  and ( )tρ  based on the limiting forms 
for ( )tkμ  and ( )tkρ  as k increases will tend to be too large for values of t when ( )tμ  is too 
close to k.  We have observed that the limiting approximations are adequate for ( )tμ  and 
( )tρ  over the range of t for which ( ) 5

kt ≤μ .  Thus for complex systems, or subsystems, 
the limiting approximation functional forms should be adequate representations of ( )tμ  
and ( )tρ  over most test periods of interest. 
 The red curves in the figures below represent the exact expected number of 
surfaced modes (Figures 1, and 3), or the reciprocal of the exact expected system failure 
intensity (Figures 2 and 4).  The dots in each figure represent a corresponding stochastic 
realization.  The green curves display the finite k approximations while the blue curves 
display the corresponding limiting approximations.  The displayed curves and stochastic 
realizations are averages over ten replications of simulation steps (2) through (4).  
Similar results were obtained for the cases where the iλ  were generated from gamma, 
lognormal, and Weibull parent populations. 
 For comparison purposes, the MIL-HDBK-189 system MTBF based on Equation 
(4) was fitted to the reciprocal of the expected system failure intensity (the red curves).  
The MIL-HDBK-189 curves are displayed in yellow and were fitted utilizing all the 
observed simulated cumulative times of failure.  The use of all cumulative failure times 
requires that fixes be implemented when failure modes are observed.  The simulation was 
carried out in this manner to allow the parameters of the MIL-HDBK-189 curves to be 
statistically fitted via the maximum likelihood estimation procedure in (Department of 
Defense, 1981).  As for the other displayed quantities, the averages of 10 replicated MIL-
HDBK-189 MTBF curves are shown. 
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Figure 1. Avg. No. Surfaced Modes (Loglogistic). 

 
 Notice the high degree of accuracy displayed in Figure 1 for the finite and infinite 
k approximations despite violating the gamma assumption used to statistically fit the 
parsimonious approximations. 

 

 
Figure 2. Reciprocal of the Failure Intensity (Loglogistic). 

 
 Figure 2 displays a high degree of accuracy for the statistically fitted PM2 MTBF 
approximations despite violating the MLE assumption that the initial mode failure rates 
are gamma distributed.  In addition, the PM2 approximations of the MTBF appear 
favorable to that of the MIL-HDBK-189 model. 
 Figure 3 and 4 below are analogous to Figures 1 and 2, respectively.  The only 
difference is the generation procedure associated with the initial mode failure rates 
utilized in the analysis.  In this case, failure rates are deterministically calculated in 
accordance with a geometric sequence.  The results are similar. 
 

 
Figure 3.  Avg. No. Surfaced Modes (Geometric). 



 

 Page 16 

 

 
Figure 4. Reciprocal of the Failure Intensity (Geometric). 
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6. USING PLANNING PARAMETERS TO CONSTRUCT THE PARSIMONIOUS 
MTBF GROWTH CURVE. 
 
6.1  Methodology. 
 
6.1.1  Planning Formulae not Using Failure Mode Classification. 
 

In the previous sections, a functional form for the planned MTBF growth curve 
was developed.  It was indicated that this functional form was compatible with a number 
of potential growth patterns.  In Section 5 the simulation produced failure mode first 
occurrence times from a set of initial mode failure rates.  For each simulation replication, 
the parsimonious MTBF growth pattern was derived from a statistically fitted 
parsimonious expression for the expected number of failure modes function.  This was 
accomplished by utilizing the mode first occurrence times to obtain a MLE of scale 
parameter β subject to the initial failure intensity λ held fixed to a specified value (e.g. λ = 
0.10 in Section 5).  In practice, the initial mode rates of occurrence will not be available 
to obtain the planning curve parameter β. 

In this section we shall develop formulas for β in terms of the planning parameters 
T, MI, MG, and average FEF dμ  (and k for the finite case).  We shall also address the 
question of how well the parsimonious MTBF planning curves based on the resulting 
values of β captures several potential reliability growth patterns that depend on realized 
values of kλλ ,,1 …  and kdd ,,1 … . 

As indicated in Section 4, the form of the parsimonious expected system failure 
intensity is, 

( ) ( ) ( )( ) ( )ththt dPL +−−= λμρ 1     (26) 
For complex systems, 

( )
t

th
⋅+

=
β
λ

1
     (27) 

where Tt ≤≤0 .  For the finite k case, the equation for ( )tPLρ  remains the same with ( )th  

replaced by ( )
( ) 11 +⋅+

=
kp

k
k

t
th

β
λ  where 

k
k kp β

λ
⋅=  and kβ  denotes the planning value of β 

for finite k.   
To develop formulas for β in terms of planning parameters, let ( )tθ  denote the 

expected fraction of λ attributed to the failure modes surfaced by t.  Thus, 
( ) ( ) ( )

λλ
λθ ththt −=
−

= 1      (28) 

This yields, 
( ) ( )( )tth θλ −⋅= 1     (29) 

It follows that, 
( ) ( ) ( ){ } ( ){ } ( ){ } λθμθλθλμρ ⋅⋅−=−⋅+⋅−= tttt ddPL 111   (30) 

Let MG denote the goal MTBF at t = T and 1−= GG Mλ .  Then we set 
( ) ( ){ } λθμρλ ⋅⋅−== TT dPLG 1     (31) 

Thus, 
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For finite k let ( ) ( )tt kθθ =  where ( ) ( ) ( ) ( )1111 +−⋅+−=−= kp
k

k
k t

th
t β

λ
θ .  In the above kβ  is the 

solution to the equation (32) with ( ) ( )TT kθθ =  where 
k

k kp β
λ

⋅= . 

Note for the complex system case, 
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Therefore, for this case 
1 1
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Solving for β yields, 
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6.1.2  Planning Formulae Using Failure Mode Classifications.  
 

In some cases the set of failure modes can be split into two categories termed A-
modes and B-modes (Crow, 1982).  The B-modes are failure modes that will be mitigated 
if surfaced during test.  The A-modes are those that will not receive a corrective action 
even if observed during test.  For this case, the parsimonious expected failure intensity 
would be, 

( ) ( ) ( )( ) ( )ththt BBBdAPL +−′−+= λμλρ 1    (36) 
where Aλ  is the failure intensity due to A-modes, Bλ  is the initial failure intensity due to 
B-modes (thus BA λλλ += ), ( )thB  is the expected failure intensity due to the set of B-
modes not surfaced by t, and dμ′  is the average FEF that would be realized for the B-

modes if all were surfaced during test.  For complex systems, ( )thB  is given by 
t

B

⋅+ β
λ

1
.  

Using an argument similar to the one in Section 6.1.1 it can be shown that for this case 
planning formula (35) becomes, 
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where λ
λBMS = .  The planning parameter MS is termed the management strategy.  This 

represents the fraction of λ that is due to the initial B-mode failure intensity.  For the 

finite k case, ( )thB  is given by 
( ) 11 +′⋅+ kp

k

B

tβ
λ  where 

k

B
k k

p
β
λ
⋅

=′ .  The value kβ  solves 
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Equation (32) with ( )Tθ  replaced by ( ) ( ) ( )1
, 1 1 kp

k B kT Tθ β ′− += − + ⋅  and dμ  replaced by 

dMS μ′⋅ . 
 
6.2  Comparisons of MTBF Approximations Using Planning Parameters. 
 

In what follows, we shall not use failure mode categories.  Unlike the planned 
MTBF growth curve, ( ) ( )ttMTBF PLPL

1−= ρ , the average MTBF growth path generated from 
the simulation replications depends on the particular parent population of the iλ  or 
deterministic formula used to generate the iλ , together with the generated mode FEFs 
drawn from a beta distribution.  Thus, this average MTBF growth path over [ ]Tt ,0∈  
depends on far more than just k, T, IM , GM , and dμ .  Hence one cannot expect that the 
planned growth path from IM  to GM , based solely on the planning parameters, will 
always closely match the averaged reciprocals of the exact expected system failure 
intensity.  However, as indicated in the preceding sections, the functional form of the 
parsimonious MTBF planning curve is more compatible with respect to the realized 
MTBF growth pattern than the MIL-HDBK-189 power law MTBF growth pattern.  
Additionally, the planning parameters are easier to interpret and directly influence than 
those utilized in the MIL-HDBK-189 approach. 
 In a number of instances of practical interest the parsimonious MTBF model 
based on the planning parameters closely approximates the averaged exact MTBF growth 
patterns.  To consider this, we shall compare the parsimonious MTBF planning curve to 
the reciprocals of the realized stochastic system failure intensity and expected system 
failure intensity.  For a given simulation replication we shall stochastically generate from 
a given parent population or deterministically calculate kλλ ,,1 … , together with 
corresponding mode FEFs kdd ,,1 … .  The FEFs are generated on each replication from a 
beta distribution with a mean of 0.80 and coefficient of variation of 0.10. 
 To calculate the planning value of β on each simulation replication, we shall set 

1−= λIM  where ∑
=

=
k

i
i

1

λλ  and choose ∑
=

=
k

i
id d

k 1

1μ  (one could alternately choose dμ  to be 

the expected value of the beta distribution).  The value of GM  is set equal to the 
reciprocal of the realized value of the stochastic system failure intensity at t = T.  Then 
Equation (32) with the appropriate form of ( )tθ  is used to obtain the planning β for the 
finite k and complex system cases.  The corresponding finite k and complex system 
MTBF planning curves for the replication are given by ( ) ( )ttMTBF PLPL

1−= ρ  where ( )tPLρ  is 
specified in Equation (26). 
 The plots below in Figures 5, 6, 8, and 10 compare the average of ten replicated 
MTBF finite and infinite k planning curves (green and blue curves, respectively) to the 
corresponding averages of the reciprocals of the following failure intensities: (1) 
stochastic realizations of the system failure intensity (black dots); (2) the expected system 
failure intensity (red curves) and; (3) MIL-HDBK-189 planning curve failure intensities 
(yellow curves).  For our examples the test period is T = 10,000 hours and k = 1,500. 
 One problem encountered in utilizing planning parameters to generate the MIL-
HDBK-189 curves is that, as noted in Section 3, these curves employ an average MTBF 
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over a selected initial test phase (since the curves interpolate back to a zero MTBF at t = 
0).  To generate a MIL-HDBK-189 planning curve on each simulation replication using 

IM , GM , and T we have used the initial system MTBF metric given in (Crow, 2004) for 
power law growth curves.  The expression for IM  given in (Crow, 2004), denoted by 

CEIM , , is given by 

( ), 1/

11

M

M
I CE

M

M β

β

λ

⎛ ⎞
Γ +⎜ ⎟
⎝ ⎠=     (38) 

where Mλ  and Mβ  are the MIL-HDBK-189 power law parameters utilized in Equations 
(1) and (2).  The rationale for the IM  metric given by (38) is not discussed in (Crow, 
2004).  However, it may have been motivated by the following fact: for a non-
homogeneous Poisson process of the number of failures experienced by test time t with 
mean value function MtM

βλ ⋅ , the time to first failure is Weibull distributed.  Moreover, 
the mean of this Weibull random variable is equal to the right-hand side of Equation (38).   
 Averages of ten replicated power law MTBF approximations shown in yellow in 
the figures below were obtained using the IM  metric presented in (Crow, 2004) as 
follows: 

1. Set 1−= λIM  where ∑
=

=
k

i
i

1

λλ  and kλλ ,,1 …  are the realized failure mode initial 

rates of occurrence for the replication; 
2. On each simulation replication of the realized stochastic system failure 

intensity, set GM  equal to the reciprocal of the realized failure intensity at t = 
T; 

3. Set CEII MM ,=  and { } 11 −−⋅⋅= MTM MMG
ββλ .  Solve for Mλ  and Mβ , and; 

4. Set ( ) ( ){ } 1−= ttMTBF Mρ  for Tt ≤≤0  where ( ) 1−⋅⋅= Mtt MMM
ββλρ .  The values for 

Mλ  and Mβ  that satisfy the two equations in step 3 can readily be shown to 

satisfy the equations 
M

GM

M
I

M
T

T

M
β

β

β
1

11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ

= , and 
GM

M M
T M

⋅
=

−

β
λ

β1

. 

 First we consider several cases where the iλ  are considered a realization of a 
random sample of size k from a specified parent population.  The reference (Miller, 1985) 
considers a class of software reliability models where the initial bug rates of occurrence 
are assumed to represent such realizations.  
 
6.2.1  Gamma Parent Population. 
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Figure 5.  Reciprocal of the Failure Intensity (Gamma). 

  
In Figure 5 above the parent population is a gamma distribution.  This distribution 

has been utilized as a parent population for initial bug rates of occurrence in the software 
reliability literature (Fakhre-Zakeri et. al., 1992).  For this case the averages of the MTBF 
planning curves for the finite and infinite cases are quite close to the averages of the 
reciprocals of the realized stochastic and expected system failure intensities.  The close 
approximation is a consequence of the relation mentioned in Section 4 between the 
solution of the differential equation that defines the parsimonious function ( )tkμ  for the 
expected number of failure modes surfaced by t and the gamma distribution.   
 
6.2.2  Lognormal Parent Population. 
 

 
Figure 6.  Reciprocal of the Failure Intensity (Log Normal). 

 
In Figure 6 above a lognormal parent population is utilized.  For this population, 

the averaged parsimonious MTBF approximations based on the finite and infinite 
planning values of β are again close to the averages of the reciprocals of the realized 
stochastic and expected system failure intensities.  However, this close agreement does 
not always occur, as illustrated in Figure 8.  To consider this further, we shall look at the 
portion of the initial failure intensity that the top w failure modes comprise as a function 
of w.  The top w failure modes refer to a set of failure modes of size w whose initial 
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failure rates are at least as large as the initial failure rates of the remaining k-w modes.  
More formally, for ki ,,1…=  let ( )iλ  denote the ordered mode initial failure rates such that 

( ) ( )kλλ ≥≥"1 .  Also let ( ) ( )∑
=

⎟
⎠
⎞

⎜
⎝
⎛≡

w

i
iw

1

1 λ
λ

η  for kw ,,1…=  where ∑
=

=
k

i
i

1

λλ . 

 

 
Figure 7.  Top W Modes (Log Normal). 

 
The graphs of the average, ( )wη , of the ten replicated functions ( )wη  is displayed 

in Figure 7 for the case where on each replication, kλλ ,,1 …  was drawn from a lognormal 
distribution with mean k

10.0 .  This lognormal distribution was also used to generate the 
ten replicated graphs of the realized and expected system failure intensities on which 
Figure 6 is based.  Note in Figure 7 that ( )100η  is less than 0.40. 

 

 
Figure 8.  Reciprocal of the Failure Intensity (Log Normal). 

 
Figure 9 is the corresponding graph of ( )wη  versus w for the MTBF average 

curves displayed in Figure 8.  The ten replicated system failure intensity curves utilized 
in Figure 8 are based on the same ten sets of initial mode failure rates used to construct 
the graph in Figure 9.  As for Figures 6 and 7, the lognormal parent population used had a 
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mean equal to k
10.0 .  However the variance was larger than that of the lognormal utilized 

for Figures 6 and 7.  This resulted in ( )100 0.50η > . 
 

 
Figure 9.  Top W Modes (Log Normal). 

 
In general, the closer the graph of ( )wη  is to the line through the origin with slope 

equal to 1/k, the closer the averaged MTBF planning curve will be to the averaged 
reciprocals of the realized stochastic and expected system failure intensities.  This 
follows from the fact that the solution to the differential equation, ( )tkμ , converges to ( )tμ  
as kλλ ,,1 …  approach a common value 00 >λ .  For the case where 0λλ =i  for ki ,,1…=  on 
each replication, the graph of ( )wη  versus w for kw ,,1…=  lies on the line through the 

origin with slope equal to 1/k.  Note the graph of ( )wη  in Figure 7, although not close to 

the line through the origin with slope 1/k, is closer to this line than is the graph of ( )wη  
displayed in Figure 9.  This is consistent with the planning approximation in Figure 6 
being more accurate than in Figure 8.  The lognormal distribution for the iλ  on which 
Figures 8 and 9 are based would not be a realistic candidate in many instances for the 
parent population. 
 
6.2.3  Geometric Initial Mode Failure Rates. 

 
Finally, we consider geometric failure rates, a case where the initial mode failure 

rates are specified deterministically.  For this case recall i
i ba ⋅=λ  for ki ,,1…=  where a > 

0 and 0 < b < 1.  According to Miller (1985), such bug initial failure rates have been 
estimated during replicated – run software debugging experiments (Nagel, 1984, 1982).  
For such a deterministic case, only the set of associated FEFs kdd ,,1 …  are regenerated 
from the beta distribution on each replication.  Note that one can show, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⋅⋅=⋅== ∑∑
== b

bbaba
kk
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i
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i
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11

λλ    (39) 

Thus, 

( ) 1
11 −
−⎟

⎠
⎞

⎜
⎝
⎛

⋅
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= k
I b
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bM     (40) 
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Also, as before on each simulation replication, Gλ  is set equal to the realized value of the 
stochastic system failure intensity at t = T and 1−= GGM λ .  To calculate the MTBF planning 
curve on the replication, in addition to T, MI, and MG, the average FEF value dμ  must be 

specified.  We set ∑
=

=
k

i
id d

k 1

1μ  (an alternate possibility would be to set dμ  equal to the 

specified mean of the beta distribution).  Figure 10 displays the averages of the ten 
MTBF planning curves for the finite and infinite cases over the replications (green and 
blue curves, respectively).  These average curves are compared to the averaged 
reciprocals of the realized stochastic system failure intensities (black dots) and the 
expected system failure intensities (red curve).  Also displayed, is the average of the ten 
MIL-HDBK-189 planning curves (yellow curve).  These are based on T, GM , and 

CEII MM ,= . 

 
Figure 10.  Reciprocal of the Failure Intensity (Geometric). 

 
Figure 11 displays the graph of ( ) ( )ww ηη =  versus w.   

 
Figure 11.  Top W Modes (Geometric). 

 
Even though the top 100 modes account for 60% of the initial failure intensity, the finite 
and infinite averages of the 10 replicated PM2 planning curves are reasonably compatible 
with the averages of the reciprocals of the 10 corresponding realized stochastic system 
failure intensities and expected system failure intensity graphs.  The parameter b governs 
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the percent of the initial failure intensity contributed by ( ) ( )kλλ ,,1 … .  One can show 

( )
k

w

b
bw

−
−

=
1
1η  for kw ,,1…= .  Also, holding λ and b fixed we obtain ( ) ( ) w

k
bww −==

∞→∞ 1limηη  

for …,2,1=w . 
 As for the lognormal case, if ( )100η  is lowered from its current value, then this 
will generally lead to the finite and infinite average of the PM2 MTBF planning curves 
being closer to the averages of the reciprocals of the realized and expected system failure 
intensities. 
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7.  RELIABILITY GROWTH POTENTIAL. 
 
7.1  Growth Potential in Terms of Planning Parameters. 
 

In contrast to the MIL-HDBK-189 planning model, the PM2 planning 
approximation recognizes a ceiling for the MTBF.  To obtain this limiting value we note 
that ( ) 0lim =

∞→
th

t
.  From Equation (26) we then obtain 

( ) ( ) λμρ ⋅−=
∞→ dPLt

t 1lim      (41) 

This limiting value of ( )tPLρ  is termed the growth potential failure intensity and is 
denoted by GPρ .  The growth potential MTBF is defined to be ( )1

GP tρ−  and is denoted by 

GPM .  Note, 

d

I
GP

M
M

μ−
=

1
     (42) 

From Equation (30) it is clear that ( )tPLρ  is a strictly decreasing function of t whose limit 
as ∞→t  is GPρ .  Equivalently, ( ) ( )ttMTBF PLPL

1−= ρ  is a strictly increasing function of t 
whose limit as ∞→t  is GPM . 
 The above comments with respect to ( )tPLρ  and ( )tMTBFPL  also apply to the case 
where failure modes are classified into A-modes and B-modes.  However, for this case, 

( ) d

I
GP MS

M
M

μ′⋅−
=

1
    (43) 

where dμ′  now denotes the average FEF with respect to the B-modes. 
  
7.2  Planning Parameter β in Terms of Growth Potential. 
 

The complex system planning formula for β, given by Equation (35), can be 
rewritten in terms of the MTBF growth potential.  One can show, 

⎟⎟
⎟
⎟
⎟
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⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
⎟
⎠
⎞

⎜
⎝
⎛=

GP

G

I

G

M
M

M
M

T 1

1
1β     (44) 

This formula applies whether one or two failure mode categories are utilized, as long as 
the appropriate expression for GPM  is applied.  For a logically consistent set of reliability 
growth planning parameters one must have GPGI MMM << .  Note this ensures that 0>β .   
 
7.3  Plausibility Metrics for Planning Parameters. 
 

Observe that Equation (44) shows that if T is chosen to be unrealistically small for 
growing from IM  to GM  then the resulting value of β will be unduly large.  This would 
be reflected in the function, 

( )
t

tt
⋅+

⋅
=

β
βθ

1
     (45) 
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rising towards one at an unrealistic rate.  For example, a large β could imply that 
( ) 80.00 =tθ  for an initial time segment [ ]0,0 t  for which past experience indicates it would 

not be feasible to surface a set of failure modes that accounted for 80% of the initial 
failure intensity.  An unrealistically large β, and corresponding ( )tθ  function, could also 
arise by choosing GM  to be an excessively high percentage of GPM .  This discussion also 
pertains to the case where two failure mode categories are utilized.  For this case ( )tθ  is 

replaced by ( )B tθ , or the left-hand side of Equation (45).  The value ( )B tθ  denotes the 
expected fraction of Bλ  attributed to the B-modes surfaced by t.  The scale parameter β 
utilized in obtaining ( )B tθ  is still given by Equation (44).  However, to obtain ( )B tθ , 

GPM  is computed via Equation (43). 
A second potentially useful metric for judging whether the planning parameters 

give rise to a reasonable value for β is the implied average mode failure rate for the 
expected set of surfaced modes over a selected initial reference test period [ ]0,0 t .  
Denoting this average mode failure rate by ( )0tavgρ  we have, 

( ) ( )
( )0

0
0 t

th
tavg μ

λ
ρ

−
=     (46) 

Classifying failure modes into A and B modes we have, 

( ) ( )
( )0

0
0, t

th
t

B

BB
Bavg μ

λ
ρ

−
=     (47) 

where ( )0, tBavgρ  denotes the average B-mode failure rate for the set of B-modes expected 
to be surfaced during [ ]0,0 t .  In Equation (47), ( )0tBμ  is the expected number of surfaced 
B-modes over [ ]0,0 t .  For complex systems, Equation (46) yields, 

( ) ( )
( ) ( )000

2
0

0 1ln1 ttt
t

tavg ⋅+⋅⋅+⋅
⋅

=
ββ

β
ρ    (48) 

where β is given by Equation (44) with GPM  expressed by Equation (42).  Likewise for 
complex systems, Equation (47) implies, 

( ) ( )
( ) ( )000

2
0

0, 1ln1 ttt
t

tBavg ⋅+⋅⋅+⋅
⋅

=
ββ

β
ρ    (49) 

where β is given by Equation (44) with GPM  expressed by Equation (44).  For a given IM  
(and MS for ( )0, tBavgρ ), ( )0tavgρ  and ( )0, tBavgρ  can be expressed in terms of T and GM  for 

GPGI MMM <≤ .  Denote these expressions for ( )0tavgρ  and ( )0, tBavgρ  by ( )0;, tMT Gavgρ  and 
( )0;, tMT Gavgρ , respectively.  The following properties of these functions can be  useful in 

judging whether T and GM  are reasonable planning values: 
1. ( )0;, tMT Gavgρ  and ( )0, ;, tMT GBavgρ  are continuous positive strictly decreasing 

functions of T and strictly increasing functions of GM  for GPGI MMM <≤ ; 
2. ( )0;, tMT Gavgρ  and ( )0, ;, tMT GBavgρ  approach infinity as T approaches zero or GM  

approaches GPM  and; 
3. ( )0;, tMT Gavgρ  and ( )0, ;, tMT GBavgρ  approach zero as T approaches infinity or GM  

approaches IM .   
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A third potentially useful metric to judge the reasonableness of the planning 
parameters is the expected number of unique failure modes or unique B-modes surfaced 
over an initial test interval [ ]0,0 t  they imply.  Prior experience with similar developmental 
programs or initial data from the current program can serve as benchmarks. 
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8.  GENERATING A PLANNED RELIABILITY GROWTH PATH. 
 

Once the planning parameters are chosen, the parsimonious approximation for the 
expected failure intensity can be used to generate a detailed reliability growth planning 
curve.  For example, suppose a test schedule is laid out that gives the planned number of 
RAM miles accumulated on the units under test per month.  Also suppose the test 
schedule specifies blocks of calendar time for implementing corrective actions.  Finally, 
for planning purposes let us assume that in order for a failure mode to be addressed in an 
upcoming corrective action period, it must occur four months prior to the start of the 
period.  For this situation the MTBF could be represented by a constant value between 
the ends of corrective action periods and between the start of testing and the end of the 
first scheduled corrective action period (CAP).  For such a test plan, jumps in MTBF 
would be portrayed at the conclusion of each CAP.  The increased MTBF after the jump 
is given by ( ) ( ){ } 1−= ii ttMTBF ρ  where it  denotes the accumulated test time, as determined 
from the monthly schedule, by the calendar date that occurs four months prior to the start 
of the thi  CAP.  Since ( )itMTBF  depends on a large number of parameters it would be 
approximated by the parsimonious approximation ( ){ } 1−

ik tρ  or ( ){ } 1−
∞ itρ .  In such a 

manner a sequence of target MTBF steps would be generated that grow from the initial 
MTBF value to a goal MTBF value. 

Figure 12 below depicts a detailed reliability growth planning curve for a 
complex system for the case where A and B failure mode categories are utilized.   
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Figure 12.  PM2 Reliability Growth Planning Curve. 

 
The blue curve in Figure 12 represents ( ) ( ){ } 1−= ttMTBF PLρ  where ( )tPLρ  is given by 
Equation (36) and β is obtained from the planning parameters by Equation (37).  Note the 
value ( )tMTBF  is the system MTBF one expects to obtain once all corrective actions to B-
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modes surfaced during test period [ ]t,0  are implemented.  The MTBF steps are 
constructed from the blue curve, the schedule of corrective action periods (CAPs), and 
the assumed average corrective action implementation lag.  In Figure 12 note that the 
goal MTBF, GM , was chosen to be larger than 65=RM  hours, the MTBF to be 
demonstrated during a follow-on Initial Operational Test and Evaluation (IOT&E).  This 
test is an operational demonstration test of the system’s suitability for fielding.  Such a 
test is mandated by public law for major DoD developmental systems.  In such a 
demonstration test it may be required to demonstrate  RM  with a measure of assurance.  
In the figure we have utilized as our measure of assurance a demonstration of RM  at the 
80% statistical confidence level.  To have a reasonable probability of achieving such a 
demonstration, the system must enter the IOT&E with an MTBF value of +

R
M  which is 

greater than RM .  The needed value of +
R

M  can be determined by a well-known statistical 
procedure from the IOT&E test length, the desired confidence level of the statistical 
demonstration, and the specified probability of being able to achieve the statistical 
demonstration.  After determining +

R
M  one can consider what the goal MTBF, GM , 

should be at the conclusion of the development test.  The value of GM  should be the goal 
MTBF to be attained just prior to the IOT&E training period that proceeds the IOT&E.  
The goal MTBF associated with the development test environment must be chosen 
sufficiently above +

R
M  so that the operational test environment does not cause the 

reliability of the test units to fall below +
R

M  during the IOT&E.  The significant drop in 
MTBF often seen could be attributable to operational failure modes that were not 
encountered during the developmental test.  In Figure 12 a derating factor of 10% was 

used to obtain GM  from +
R

M , i.e., in the figure 
90.0

+

= R
G

M
M . 
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A.  SIMULATION.

A.1  Simulating a Developmental Test.

The  first  part  of  the  simulation generates data typical to that which  would be cap-
tured during a developmental test.  There are a number of inputs to the simulation.  A variety
of parent populations of initial mode failure rates are explored.  The failure rates are either
deterministically calculated,  or  stochastically  generated.   The deterministic  failure rates  are
calculated in accordance to a specified geometric sequence.  The choice of stochastic parent
populations of failure rates include: (1) gamma; (2) lognormal; (3) Weibull or; (4) log logis-
tic.  Using the failure rates, the failure mode First Occurrence Times (FOTs) are calculated.
Using the mode failure rates in addition to the FOTs, the remaining mode failure times in the
test  are  generated.   Failure  mode  Fix  Effectiveness  Factors  (FEFs)  are  drawn  from a  beta
distribution with mean 0.8 and a coefficient of variation of 0.1. The simulation is repli-
cated a specified number of times.  The failure rates, failure times, and FEFs produced dur-
ing each replication are saved.

H∗∗∗ INPUTS ∗L
<< Statistics`
<< Graphics`
VGS = 1;
BetaAlternate = 0;
Deterministic = 0;
PM2@D := 9

dist = 2; H∗ 1−Gamma, 2−Log Normal, 3−Weibull, 4−LogLogistic ∗L
βa = 80.0001, 0.001<;
T = 10000;
kA = 5;
kB = 1500;
EλA,K = 10−1;
EλB,K = 10−1;

αa = 9 EλA,K
cccccccccccccccccccccc
kA βaP1T ,

EλB,K
cccccccccccccccccccccc
kB βaP2T =;

H∗∗∗ DISTRIBUTION PARAMETERS ∗L

σn = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%LogA1 +
1

ccccccc
αa

E ;

μn = LogA αa βa
ccccccccccccccccccccccc
"##############1 + 1ccccc

αa

E;

βw = 9x ê. FindRootA
Gamma@1 + 2ccccx Dccccccccccccccccccccccccccccccccccccc
Gamma@1 + 1ccccx D

2
m 1 +

1
ccccccccccccccc
αaP1T , 8x, .5<E,
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x ê. FindRootA
Gamma@1 + 2ccccx Dccccccccccccccccccccccccccccccccccccc
Gamma@1 + 1ccccx D

2
m 1 +

1
ccccccccccccccc
αaP2T , 8x, .5<E=;

θw =
αa βa

cccccccccccccccccccccccccccccccccccc
GammaA1 + 1ccccc

βw
E

;

σln = 9σl ê. FindRootA Gamma@1 − 2 σlD Gamma@1 + 2 σlD
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Gamma@1 − σlD2 Gamma@1 + σlD2

m 1 +
1

ccccccccccccccc
αaP1T , 8σl, .1<E,

σl ê. FindRootA Gamma@1 − 2 σlD Gamma@1 + 2 σlD
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Gamma@1 − σlD2 Gamma@1 + σlD2

m 1 +
1

ccccccccccccccc
αaP2T , 8σl, .1<E=;

μln = LogA αa βa
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Gamma@1 + σlnD Gamma@1 − σlnD

E;

GammaMean = Mean@GammaDistribution@αaP2T, βaP2TDD;
GammaVariance = Variance@GammaDistribution@αaP2T, βaP2TDD;

H∗∗∗ A & B−MODE FAILURE RATES ∗L
IfADeterministic m 1,

βoverλ = 0.01;
λK = 0.1;

c =
βoverλ + 1
ccccccccccccccccccccccccccc
1 − βoverλ

;

b = b ê. FindRootAc ==
1 − bkB+1

cccccccccccccccccccc
b − bkB

, 8b, 0.8<E;

a = i
k
jj 1 − b

cccccccccccccccc
1 − bkB

y
{
zz λK;

λA = Table@a bi−1, 8i, kA<D;
λB = Table@a bi−1, 8i, kB<D;,

λA = Which@
dist m 1, Table@Random@GammaDistribution@αaP1T, βaP1TDD, 8i, kA<D,
dist m 2, Table@Random@LogNormalDistribution@μnP1T, σnP1TDD, 8i, kA<D,
dist m 3, Table@Random@WeibullDistribution@βwP1T, θwP1TDD, 8i, kA<D,
dist m 4, Table@ÆRandom@LogisticDistribution@μlnP1T,σlnP1TDD, 8i, kA<DD;

If@Length@Position@λA, 0.DD > 0,
λA = ReplacePart@λA, 10−10, Position@λA, 0.DD,H∗ Do Nothing ∗LD;

λB = Which@
dist m 1, Table@Random@GammaDistribution@αaP2T, βaP2TDD, 8i, kB<D,
dist m 2, Table@Random@LogNormalDistribution@μnP2T, σnP2TDD, 8i, kB<D,
dist m 3, Table@Random@WeibullDistribution@βwP2T, θwP2TDD, 8i, kB<D,
dist m 4, Table@ÆRandom@LogisticDistribution@μlnP2T,σlnP2TDD, 8i, kB<DD;

If@Length@Position@λB, 0.DD > 0,
λB = ReplacePart@λB, 10−10, Position@λB, 0.DD,H∗ Do Nothing ∗LD;E;

H∗∗∗ UNIFORM RANDOM NUMBERS ∗L
UA = Table@Random@D, 8i, kA<D;
UB = Table@Random@D, 8i, kB<D;

H∗∗∗ FIRST OCCURRENCE TIMES ∗L

tA =
−Log@UAD
cccccccccccccccccccccccc

λA
;
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tB =
−Log@UBD
cccccccccccccccccccccccc

λB
;

H∗∗∗ FIX EFFECTIVENESS FACTORS ∗L
c = 0.8;
v = 0.1;

q =
1 − c − c v2

ccccccccccccccccccccccccccc
v2

;

r = i
k
jj 1 − c

cccccccccccc
c

y
{
zz q;

dA = Table@0, 8i, kA<D;
dB = Table@Random@BetaDistribution@q, rDD, 8i, kB<D;

H∗∗∗ FAILURE TIMES ∗L
timeline@tlist_, λlist_, dlist_D := 9

tl = Table@If@tlistPiT ≤ T, 8tlistPiT<, NullD, 8i, Length@tlistD<D;
TableAWhileAMax@tlPiTD ≤ T,

NewT = Max@tlPiTD −
Log@Random@DD

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH1 − dlistPiTL λlistPiT ;

If@NewT ≤ T, AppendTo@tlPiT, NewTD, Break@DD;
E;, 8i, 1, Length@tlistD<E; tl=;

x = Sort@Flatten@Cases@Flatten@timeline@tB, λB, dBD, 1D, _ListDDD;

H∗∗∗ DATA STORAGE ∗L
AppendTo@ReplicatedFailureRates, λBD;
AppendTo@ReplicatedFailureTimes, xD;
AppendTo@ReplicatedFOT, tBD;
AppendTo@ReplicatedFEF, dBD;=;

A.2  Replicating the Simulation.

The  code  in  the  previous  section defined a function PM2[], which  simulates data
typical  to  that  which  would  follow from developmental  testing.   The  code  below executes
the simulation for a specified number of replications.  Only one replication is required when
using  deterministic  failure  rates,  since  they  are  calculated  in  accordance  with  a  geometric
sequence.   That  is,  there is  no  variability  in  the failure rates  in the  deterministic case from
replication  to  replication.   Note  though  that  FEFs  are  generated  during  each  replication of
the simulation.

ReplicatedFailureRates = 8<;
ReplicatedFailureTimes = 8<;
ReplicatedFOT = 8<;
ReplicatedFEF = 8<;
Replications = If@Deterministic m 1, 1, 10D;
Table@PM2@D, 8Replications<D;
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A.3  Input Parameters, and Distributions.

This section prints a summary of the input parameters utilized in the simulation.  The inputs
include the number of replications, the test length, the parent population of failure rates, the
number  of  potential  A-modes,  and  the  number  of  potential  B-modes.   Simulation  results;
such as,  the average number of  surfaced failure modes, the average number of failures,  the
average estimated growth rate, and MLEs for the distribution parameters are also printed.  A
plot  of  there  Probability  Density  Functions  (PDFs)  of  the  various  parent  populations of
initial mode failure rates is displayed in Figure 13.

H∗∗∗ INPUTS ∗L
ReplicatedSurfaced =

Table@Length@Position@ReplicatedFOTPiT, _ ?H# ≤ T &LDD, 8i, 1, Replications<D;
ReplicatedFailures = Map@Length@#D &, ReplicatedFailureTimesD;

βcrow = MapAi
k
jjj

Length@#D − 1
ccccccccccccccccccccccccccccccccccc

Length@#D
y
{
zzz

Length@#D
cccccccccccccccccccccccccccccccccccccccccccccccccccc

‚
i=1

Length@#D
LogA Tcccccccccc#PiT E

&, ReplicatedFailureTimesE;

Print@"SIMULATION INPUTS:\n",
"Replications : " <> ToString@ReplicationsD,
"\nTest Length : " <> ToString@TD,
"\nFailure Rates: " If@Deterministic m 1, "Geometric", Which@dist m 1, "Gamma",

dist m 2, "Log Normal", dist m 3, "Weibull", dist m 4, "LogLogistic"DD,
"\nA−Modes : " <> ToString@kAD,
"\nB−Modes : " <> ToString@kBD,
"\nSurfaced: " <> ToString@Ceiling@Mean@ReplicatedSurfacedDDD,
"\nFailures: " <> ToString@Ceiling@Mean@ReplicatedFailuresDDD,
"\nGrowth Rate: " <> ToString@Mean@1 − βcrowDDD;

H∗∗∗ DISTRIBUTIONS ∗L
Print@"DISTRIBUTION PARAMETERS:\n",

TableForm@8
8"Gamma", "Normal", "Weibull", "Logistic"<,
8"β= " <> ToString@NumberForm@βaP2T, 86, 4<, NumberPadding → 8"", "0"<DD,

"μ= " <> ToString@NumberForm@μnP2T, 86, 2<, NumberPadding → 8"", "0"<DD,
"β= " <> ToString@NumberForm@βwP2T, 86, 4<, NumberPadding → 8"", "0"<DD,
"μ= " <> ToString@If@

TrueQ@Head@μlnP2TD m Complex »» Head@σlnP2TD m ComplexD,
"DNE",
NumberForm@μlnP2T, 86, 2<, NumberPadding → 8"", "0"<DDD<,

8"α= " <> ToString@NumberForm@αaP2T, 86, 4<, NumberPadding → 8"", "0"<DD,
"σ= " <> ToString@NumberForm@σnP2T, 86, 4<, NumberPadding → 8"", "0"<DD,
"θ= " <> ToString@NumberForm@θwP2T, 86, 4<,

NumberPadding → 8"", "0"<, ExponentFunction → HNull &LDD,
"σ= " <> ToString@If@

TrueQ@Head@μlnP2TD m Complex »» Head@σlnP2TD m ComplexD,
"DNE", NumberForm@σlnP2T, 86, 4<, NumberPadding → 8"", "0"<DDD<<D,

"\nMean = " <> ToString@GammaMeanD,
"\nVariance = " <> ToString@NumberForm@GammaVariance, ExponentFunction → HNull &LDDD
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H∗∗∗ PDF PLOTS ∗L

LogLogisPDF@x_, μ_, σ_D :=
1

ccccccccc
σ x

i

k

jjjjjjjjj
Æ

Log@xD−μcccccccccccccccccccσ

cccccccccccccccccccccccccccccccccc
I1 + Æ

Log@xD−μcccccccccccccccccccσ M
2

y

{

zzzzzzzzz
;

Plot@8
PDF@GammaDistribution@αaP2T, βaP2TD, xD,
PDF@LogNormalDistribution@μnP2T, σnP2TD, xD,
PDF@WeibullDistribution@βwP2T, θwP2TD, xD,
If@

TrueQ@Head@μlnP2TD == ComplexD, 1, LogLogisPDF@x, μlnP2T, σlnP2TDD
<, 8x, 0, 2 Mean@GammaDistribution@αaP2T, βaP2TDD<,
Frame → True, FrameLabel → 8"Failure Rate", "PDF"<,
PlotStyle → 8Hue@1D, Hue@.7D, Hue@.35D, Hue@.5D<,
PlotLegend → 8"Gamma", "LogNormal", "Weibull", "LogLogistic"<,
LegendPosition → 8.9, −.3<, LegendTextSpace → 4D;

SIMULATION INPUTS:
Replications : 10
Test Length : 10000
Failure Rates: Log Normal
A−Modes : 5
B−Modes : 1500
Surfaced: 395
Failures: 514
Growth Rate: 0.195564

DISTRIBUTION PARAMETERS:

Gamma Normal Weibull Logistic
β= 0.0010 μ= −11.00 β= 0.3548 μ= −10.04
α= 0.0667 σ= 1.6651 θ= 0.0000 σ= 0.4870

Mean = 0.0000666667
Variance = 0.0000000666667

0 0.000020.000040.000060.000080.00010.00012
Failure Rate

0

20000

40000

60000

80000

F
D

P

LogLogistic

Weibull
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Figure 13.  Failure Rate Parent Populations.
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From the  data  above, we  can  see  that 10 developmental tests of length  10,000  hours have
been  simulated.   In  each  replication,  5  A-modes  and  1,500  B-modes  are  generated  from a
lognormal  parent  population.   An  average  number  of  395  failure  modes,  and  514  failures
were  surfaced  over  the  10  replicated  tests.   The  average  growth  rate  over  the  10  tests  was
approximately 0.2.  Note that the estimate of the growth rate is based on the AMSAA-Crow
model.  Figure 13 shows the PDFs for the various parent populations for which failure rates
can  be  drawn.   Studying  various  parent  populations  is  important  in  examining  how robust
the PM2 model is with respect to the assumption that the initial mode failiure rates constitute
a realization of a random sample from a gamma random variable.

A.4  Visual Growth Suite.

The simulation contains an option to either calculate the reliability projections using individ-
ual mode failure rates, or utilize the AMSAA Growth Guide (Ellner et al., 2000) methodol-
ogy.   If  the  methodology in  the growth guide is  used,  the  following code will  estimate the
scale and shape paremeters of the gamma distribution in two cases.  The first  case is when
the number of failure modes is  known or assumed.  The second case estimates the limiting
form of the parameters (i.e. as the number of failure modes kØ¶).

H∗ VGS Parameter Estimates ∗L
Off@FindRoot::"lstol", FindRoot::"frmp"D
IfAVGS m 1,

m = ReplicatedSurfaced;
Clear@xD;
SurfacedFOT = Map@Extract@#, Position@#, _ ?H# ≤ T &LDD &, ReplicatedFOTD;

H∗ BETA INFINITE ∗L
BetaInf = IfABetaAlternate m 1,

g@x_D = TableAx ‚
i=1

mPjT x SurfacedFOTPjTPiT
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT +

Total@ReplicatedFailureRatesPjTD J x T
cccccccccccccccc
1 + x T

− Log@1 + x TDN, 8j, 1, Replications<E;

Map@x ê. FindRoot@# m 0, 8x, βaP2T<D &, g@xDD,

f@x_D =

TableA9Log@1 + x TD ‚
i=1

mPjT i
k
jj 1

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT

y
{
zz −

mPjT x T
ccccccccccccccccccccc

1 + x T
=, 8j, 1, Replications<E;

Map@x ê. FindRoot@# m 0, 8x, βaP2Tê2<D &, f@xDDE;

Clear@f, gD;
H∗ BETA FINITE ∗L
BetaFinite = IfABetaAlternate m 1,

f@x_D = TableA

x ‚
i=1

mPjT x SurfacedFOTPjTPiT
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT +

Total@ReplicatedFailureRatesPjTD
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

kB
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‚
i=1

mPjT i
k
jj x SurfacedFOTPjTPiT

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT − Log@1 + x SurfacedFOTPjTPiTDy

{
zz +

i
k
jj1 −

mPjT
ccccccccccccc

kB

y
{
zz Total@ReplicatedFailureRatesPjTD J x T

cccccccccccccccc
1 + x T

− Log@1 + x TDN

, 8j, 1, Replications<E;

Table@x ê. FindRoot@f@xDPiT m 0, 8x, BetaInfPiT<D, 8i, 1, Replications<D,

g@x_D = TableA
i

k
jjjjj
i

k
jjjjj‚

i=1

mPjT
LogA 1 + x T

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT E

y

{
zzzzz 
i

k
jjjjj‚

i=1

mPjT 1
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT

y

{
zzzzz −

i
k
jj mPjT x

ccccccccccccccccc
1 + x T

y
{
zz 
i

k
jjjjj‚

i=1

mPjT T − SurfacedFOTPjTPiT
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT

y

{
zzzzz
y

{
zzzzz ì

i

k
jjjjjLog@1 + x TD

i

k
jjjjj‚

i=1

mPjT 1
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + x SurfacedFOTPjTPiT

y

{
zzzzz − i

k
jj mPjT x

ccccccccccccccccc
1 + x T

y
{
zz T

y

{
zzzzz, 8j, 1, Replications<E;

Map@x ê. FindRoot@# == kB, 8x, BetaInfP1Tê 2<D &, g@xDDE;

H∗ ALPHA PLUS ONE ∗L
AlphaPlusOne = IfABetaAlternate m 1,

Map@Total@#D &, ReplicatedFailureRatesD
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

kB BetaFinite
,

TableA
mPjTccccccccccccccccccccccccccccBetaFinitePjT − ‚

i=1

mPjT SurfacedFOTPjTPiTccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc1+BetaFinitePjT SurfacedFOTPjTPiT
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

HkB−mPjTL Tccccccccccccccccccccccccccccccccccc1+BetaFinitePjT T + ‚
i=1

mPjT SurfacedFOTPjTPiTccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc1+BetaFinitePjT SurfacedFOTPjTPiT

, 8j, 1, Replications<EE;

H∗ LAMBDA INFINITE ∗L

LambdaInf =

IfABetaAlternate m 1, Map@Total@#D &, ReplicatedFailureRatesD,

TableA mPjT BetaInfPjT
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Log@1 + BetaInfPjT TD , 8j, 1, Replications<EE;

H∗ LAMBDA FINITE ∗L
LambdaFinite = If@BetaAlternate m 1, Map@Total@#D &, ReplicatedFailureRatesD,

Table@kB BetaFinitePjT AlphaPlusOnePjT, 8j, 1, Replications<DD;

H∗ VGS DATA ∗L
VGSdata = Transpose@8BetaInf, BetaFinite, AlphaPlusOne, LambdaInf, LambdaFinite<D;
Print@TableForm@VGSdata, TableHeadings → 8Automatic, 8"β∞", "βk", "α+1", "λ∞", "λk"<<DD
, Print@"Option Not Used."DE;
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β∞ βk α+1 λ∞ λk

1 0.0002724 0.000172801 0.306968 0.0824577 0.0795666
2 0.000288045 0.000187303 0.294969 0.0851845 0.0828727
3 0.00034043 0.000227366 0.254715 0.0897813 0.0868701
4 0.000257505 0.000164339 0.316343 0.0802443 0.0779812
5 0.000284446 0.000181452 0.291483 0.08259 0.0793353
6 0.000208522 0.000125068 0.380843 0.0738492 0.0714471
7 0.000312976 0.000199775 0.275441 0.0865075 0.0825396
8 0.0002851 0.000179283 0.314487 0.0875388 0.0845734
9 0.000367495 0.000252826 0.231049 0.0903118 0.0876227
10 0.000374229 0.000246748 0.23718 0.0923239 0.0877856

Table 1.  Visual Growth Suite Parameter MLEs.

Table 1 displays MLEs of five parameters, b¶,  bk,  a+1, l¶,  and lk  over 10 replications of
the  simulation.   b¶  is  the  MLE  of  the  shape  parameter  of  the  gamma  distribution  in  the
limiting  case  (as  the  number  of  failure  modes  approaches  infinity).   bk  is  the  MLE  of  the
gamma  shape  parameter  for  a  finite  number  of  failure  modes.   a+1  is  the  MLE  for  the
gamma scale parameter for finite k.   The MLEs of the initial system B-Mode failure inten-
sity is given by l¶ and lk for an infinite and finite number of modes, respectively.

A.5  Average Number of Failure Modes Surfaced.

The average number of  failure  modes surfaced over the test is examined using  all the data
generated  over  the  replicated  simulation  runs.   There  are  four  series  plotted  in  Figure  14
below.  The black dots represent the actual average number of modes surfaced.  The red line
is  the expected value of  the number of  surfaced failure modes.   The green line is  the PM2
estimate of the average number of surfaced modes using a finite number of modes.  The blue
line is the PM2 estimate of the average number of surfaced modes using an infinite number
of modes.

H∗∗∗ SURFACED B−MODES ∗L
SurfacedModes = 8<;
Table@

NBM = 8<;
steps = 8<;
Table@

SBMp = Position@ReplicatedFOTPiT, _ ?H# ≤ tp &LD;
AppendTo@NBM, Length@SBMpDD;
AppendTo@steps, tpD;, 8tp, 50, T, 1000<D;

AppendTo@SurfacedModes, NBMD;, 8i, 1, Replications<D;

H∗∗∗ AVG. NUMBER OF MODES SURFACED PLOT ∗L
H∗∗∗ ACTUAL ∗L
Actual = ListPlot@

Transpose@8steps, Mean@SurfacedModesD<D, Frame → True,
FrameLabel → 8"Test Time", "Avg. Surfaced"<,
PlotRange → 80, 1.25 Max@Map@Max@#D &, SurfacedModesDD<,
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PlotStyle → 8PointSize@0.01D<, Background → GrayLevel@0.8D,
GridLines → Automatic, DisplayFunction → IdentityD;

H∗∗∗ FINITE ∗L

Exact = PlotAMeanAMapA9kB − ‚
i=1

kB

Æ−#PiT t= &, ReplicatedFailureRatesEE, 8t, 1, T<,

PlotStyle → Hue@1D, DisplayFunction → IdentityE;

Finite = IfAVGS m 1,

PlotAMeanAkB
i
k
jjjj1 − i

k
jj 1

cccccccccccccccccccccccccccccccccccccccccc
1 + BetaFinite t

y
{
zz

AlphaPlusOney
{
zzzzE,

8t, 1, T<, PlotStyle → Hue@.35D, DisplayFunction → IdentityE,

PlotAMeanAMapA9kB

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 −

i

k

jjjjjjjjjjjjjjjjjjjjj

1
cccccccccccccccccccccccccccccccccccccccccccccccccccccc

1 +
i

k
jjjjjj

‚
i=1

kB #PiT2

cccccccccccccccccccccccTotal@#D − Total@#DccccccccccccccccccckBcccccccccccccccccccccccccccccccccc
1− 1cccccckB

y

{
zzzzzz t

y

{

zzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjj

1
cccccccckB

I1−
1

cccccccckB
M Total@#D

ccccccccccccccccccccccccccccccccccccccccccc
‚

i=1
kB #PiT2

cccccccccccccccccccccccccccccccc
Total@#D −

Total@#D
ccccccccccccccccccccccccckB

y

{

zzzzzzzzzz
y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

= &, ReplicatedFailureRatesEE

8t, 1, T<, PlotStyle → Hue@.35D, DisplayFunction → IdentityEE;

H∗∗∗ INFINITE ∗L
Inf = IfAVGS m 1,

Inf = PlotAMeanAi
k
jj LambdaInf

ccccccccccccccccccccccccccc
BetaInf

y
{
zz Log@1 + BetaInf tDE,

8t, 1, T<, PlotStyle → Hue@.6D, DisplayFunction → IdentityE,

PlotAMeanAMapA9

i

k

jjjjjjjjjjjjjjjjj

Total@#D
ccccccccccccccccccccccccccccc
i
k
jjjj

‚
i=1

kB
#PiT2

ccccccccccccccccccccTotal@#D
y
{
zzzz

y

{

zzzzzzzzzzzzzzzzz
LogA1 +

i

k

jjjjjjjjjj

‚
i=1

kB
#PiT2

ccccccccccccccccccccccccccccc
Total@#D

y

{

zzzzzzzzzz
tE= &, ReplicatedFailureRatesEE,

8t, 1, T<, PlotStyle → Hue@.6D, DisplayFunction → IdentityEE;

Show@8Actual, Exact, Finite, Inf<, DisplayFunction → $DisplayFunctionD;
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Figure 14.   Average Number of Modes Surfaced.

Notice  from  Figure  14  that  the  various PM2 estimates of the average  number  of surfaced
failure modes over the test phase are highly accurate in comparison to the black dots (i.e. the
actual  averge  number  of  surfaced  modes).   Also  note  that  this  accuracy  is  achieved  when
violating  the  PM2 assumption that  the failure rates  are gamma distributed.   That  is,  in  this
sequence of replications, failure rates were drawn from a lognormal distribution.
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A.6  Failure Mode Profile.

Figure 15 below is a plot of the failure mode profile. The profile is a plot of the magnitude
of the simulated failure rates in decending order.  This provides a graphical indication of the
shape of the distribution.

ListPlot@data, PlotRange → All, Frame → True,
FrameLabel → 8"Mode", "Mode Failure Rate"<, GridLines → AutomaticD;
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Figure 15.   Failure Mode Profile.

A.7  Cumulative Failure Mode Profile.

Figure 16 below displays a plot of the cumulative failure mode profile.  This profile is impor-
tant  in  understanding  the  impact  of  the  top  "w"  failure  modes.   For  example,  slightly  over
60% of the system failure rate is contained within the top 100 failure modes in this particular
sequence of simulation replications.

Page A-13



Clear@λD;
data = Sort@λB, GreaterD;
Plot@Sum@dataPiT, 8i, j<Dê Total@λBD, 8j, 1, kB<,

PlotRange → 880, 1.25 Max@Map@Max@#D &, SurfacedModesDD<, All<,
Frame → True, FrameLabel → 8"Number of Modes", "% of Top W Modes"<,
GridLines → AutomaticD;

TableForm@Table@8j, Sum@dataPiT, 8i, j<Dê Total@λBD<, 8j, 1, kB<DD;
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Figure 16.   Cumulative Failure Mode Profile.

A.8  System Mean Time between Failure.

The  system  MTBF  is  examined  in Figure 17 below. The black dots  represent  the actual
MTBF which is known since the failure rates are generated during the simulation.  The red
line  is  the  reciprocal  of  the  expected  system  failure  intensity.   The  green  line  is  the  PM2
estimate of the MTBF using a finite number of modes, and the blue line is the PM2 estimate
of the MTBF for an infinite number of modes.  The yellow curve is the esimate of the sys-
tem MTBF provided by the AMSAA-Crow model.   In  Figure 17 the blue and green series
are  statistically  fit  to  the  surfaced number of  modes using  MLEs based on first  occurrence
time  data.   The  yellow  curve  is  statistically  fit  using  all  failure  data  (i.e.,  first  occurrence
times  and  the  number  of  failures  for  each  mode).   MTBF  curves  will  also  be  constructed
from planning curves (i.e., not statistically fit) in Section A.11 of this report.

H∗∗∗ ACTUAL − BLACK DOTS ∗L
ActualFR = TableA

FailureRateData = 8<;
TableA

SurfacedModes = Position@ReplicatedFOTPiT, _ ?H# ≤ t &LD;
m = Length@SurfacedModesD;
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ρ = ‚
j=1

m

HH1 − Extract@ReplicatedFEFPiT, SurfacedModesDPjTL

Extract@ReplicatedFailureRatesPiT, SurfacedModesDPjTL +

‚
j=1

kB−m

Delete@ReplicatedFailureRatesPiT, SurfacedModesDPjT;

AppendTo@FailureRateData, ρD;
, 8t, 50, T, 1000<E;

FailureRateData, 8i, 1, Replications<E;

AverageActualFR = Mean@ActualFRD;
Actual = ListPlot@Transpose@8steps, 1 ê AverageActualFR<D,

Frame → True, FrameLabel → 8"Test Time", "MTBF"<,
PlotRange → 80, 1.25 Max@1 ê AverageActualFRD<,
GridLines → Automatic, PlotStyle → PointSize@.01D,
Background → GrayLevel@0.8D, DisplayFunction → IdentityD;

H∗∗∗ EXACT − RED LINE ∗L
Clear@ρD;

hE@t_D = TableAλB = ReplicatedFailureRatesPiT; 9‚
j=1

kB

λBPjT Æ−λBPjT t =, 8i, 1, Replications<E;

ρE@t_D = TableA
λB = ReplicatedFailureRatesPiT;
dB = ReplicatedFEFPiT;

9‚
j=1

kB

H1 − dBPjTL λBPjT + ‚
j=1

kB

dBPjT λBPjT Æ−λBPjT t =, 8i, 1, Replications<E;

Exact = Plot@Mean@1 êρE@tDD, 8t, 0, T<,
PlotStyle → Hue@1D, Frame → True,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
PlotRange → All, GridLines → Automatic, DisplayFunction → IdentityD;

H∗∗∗ FINITE CASE − GREEN LINE ∗L
λ = Map@Total@#D &, ReplicatedFailureRatesD;

βK = MapA
1ccccccccccccccccccTotal@#D Total@#2D − Total@#DcccccccccccccccccckBccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

I1 − 1ccccckB
M

&, ReplicatedFailureRatesE;

pK =
λ

ccccccccccccc
kB βK

;

hK@t_D = IfAVGS m 1,
LambdaFinite

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H1 + t BetaFiniteLAlphaPlusOne+1

,
λ

ccccccccccccccccccccccccccccccccc
H1 + t βKLpK+1

E;

μd = Map@Mean@#D &, ReplicatedFEFD;
ρK@t_D = IfAVGS m 1,

H1 − μdL
i
k
jjjjLambdaFinite −

LambdaFinite
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H1 + t BetaFiniteLAlphaPlusOne+1

y
{
zzzz +

LambdaFinite
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H1 + t BetaFiniteLAlphaPlusOne+1

,

H1 − μdL Hλ − hK@tDL + hK@tDE;

Finite = Plot@Mean@1êρK@tDD, 8t, 0, T<,
PlotStyle → Hue@0.35D, Frame → True,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
Pl tR All G idLi A t ti Di l F ti Id tit D
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H∗∗∗ INFINITE CASE − BLUE LINE ∗L

βK = MapA Total@#2D
ccccccccccccccccccccccccccc
Total@#D &, ReplicatedFailureRatesE;

h∞@t_D = IfAVGS m 1,
LambdaInf

cccccccccccccccccccccccccccccccccccccccH1 + t BetaInfL ,
λ

cccccccccccccccccccccccccH1 + t βKL
E;

ρ∞@t_D = IfAVGS m 1,

H1 − μdL ik
jjLambdaInf −

LambdaInf
cccccccccccccccccccccccccccccccccccccccH1 + t BetaInfL

y
{
zz +

LambdaInf
cccccccccccccccccccccccccccccccccccccccH1 + t BetaInfL , H1 − μdL Hλ − h∞@tDL + h∞@tDE;

Inf = Plot@Mean@1ê ρ∞@tDD, 8t, 0, T<,
PlotStyle → Hue@0.6D, Frame → True,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
PlotRange → All, GridLines → Automatic, DisplayFunction → IdentityD;

H∗∗∗ CROW ∗L

λcrow =
ReplicatedFailures
ccccccccccccccccccccccccccccccccccccccccccccccccccccc

Tβcrow
;

μcrow@t_D = Mean@λcrow tβcrowD;
ρcrow@t_D := Mean@λcrow βcrow tβcrow−1D;
LC = Plot@1êρcrow@tD, 8t, 0, T<,

PlotStyle → Hue@0.15D, Frame → True,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
PlotRange → All, GridLines → Automatic, DisplayFunction → IdentityD;

Show@8Actual, Exact, Finite, Inf, LC<, DisplayFunction → $DisplayFunctionD;
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Figure 17.   System MTBF.
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A.9  System Failure Intensity.

The  system  failure  intensity  is  plotted and displayed in Figure 18 below.   The  black dots
represent the actual system failure intensity which is known since the failure rates are simu-
lated.  The red line is the expected system failure intensity.  The green line is the PM2 esti-
mate  of  the  failure  intensity  using  a  finite  number  of  modes,  and  the  blue  line  is  the  PM2
estimate  of  the  failure  intensity  for  an  infinite  number  of  modes.   The  yellow curve  is  the
esimate of the system failure intensity provided by the AMSAA-Crow model.

H∗∗∗ ACTUAL − BLACK DOTS ∗L
Actual = ListPlot@Transpose@8steps, AverageActualFR<D,

Frame → True, FrameLabel → 8"Test Time", "Failure Rate"<,
PlotRange → 80, Max@AverageActualFRD<, GridLines → Automatic,
PlotStyle → PointSize@0.01D,
Background → GrayLevel@0.8D, DisplayFunction → IdentityD;

H∗∗∗ CROW ∗L
LC = Plot@ρcrow@tD, 8t, 0, T<, PlotStyle → Hue@0.15D,

Frame → True, FrameLabel −> 8"Test Time", "Exact Failure Rate"<,
PlotRange → All, GridLines → Automatic, DisplayFunction → IdentityD;

H∗∗∗ EXACT − RED LINE ∗L
Exact = Plot@Mean@ρE@tDD, 8t, 0, T<,

PlotStyle → Hue@1D, Frame → True,
FrameLabel −> 8"Test Time", "Exact Failure Rate"<,
PlotRange → All, GridLines → Automatic, DisplayFunction → IdentityD;

H∗∗∗ FINITE − GREEN LINE ∗L
Finite = Plot@Mean@ρK@tDD, 8t, 0, T<,

PlotStyle → Hue@0.35D, Frame → True,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
PlotRange → All, GridLines → Automatic, DisplayFunction → IdentityD;

H∗∗∗ INFINITE − BLUE LINE ∗L
Inf = Plot@Mean@ρ∞@tDD, 8t, 0, T<,

PlotStyle → Hue@0.6D, Frame → True,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
PlotRange → 80, 1.25 Max@Mean@ρ∞@tDDD<,
GridLines → Automatic, DisplayFunction → IdentityD;

Show@8Actual, Exact, Finite, Inf, LC<, DisplayFunction −> $DisplayFunctionD;
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Figure 18.   System Failure Intensity.

A.10  The Rate of Occurrence of Unseen Failure Modes.

In  this  section  the  rate  of  occurrence of unseen, or unobserved, failure  modes  (i.e. h[t]) is
studied.  Figure 19 below shows a plot of h[t] over a test period of 10,000 hours.  This quan-
tity  is  important  since  it  reveals  the  portion  of  the  system failure  intensity  that  has  not  yet
been observed.  There are three series shown in Figure 19.  The red line is the expected rate
of occurrence of new modes.  The green line is the PM2 estimate of the rate of occurrence of
new modes for  finite  k,  and  the  blue  line  is  the  PM2 estimate  of  the  rate  of  occurrence of
new modes as kØ¶.
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H∗∗∗ EXACT − RED LINE ∗L
Exact = Plot@Mean@hE@tDD, 8t, 0, T<,

PlotStyle → Hue@1D, Frame → True,
FrameLabel −> 8"Test Time", "h@tD"<,
PlotRange → All, GridLines → Automatic,
DisplayFunction → IdentityD;

H∗∗∗ FINITE − GREEN LINE ∗L
Finite = Plot@Mean@hK@tDD, 8t, 0, T<,

PlotStyle → Hue@0.35D, Frame → True,
FrameLabel −> 8"Test Time", "h@tD"<,
PlotRange → All, GridLines → Automatic,
DisplayFunction → IdentityD;

H∗∗∗ INFINITE − BLUE LINE ∗L
Inf = Plot@Mean@h∞@tDD, 8t, 0, T<,

PlotStyle → Hue@0.6D, Frame → True,
FrameLabel −> 8"Test Time", "h@tD"<,
PlotRange → All, GridLines → Automatic,
DisplayFunction → IdentityD;

Show@8Exact, Finite, Inf<, DisplayFunction −> $DisplayFunctionD;
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Figure 19.  System Failure Intensity due to Unobserve Modes.
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A.11  System MTBF based on Planning Parameters.

We revisit the system MTBF in order to construct the MTBF curves from planning parame-
ters.   The  black  dots  represent  the  actual  system  MTBF  which  is  known  since  the  failure
rates  are  simulated.   The red  line  is  the  reciprocal  of  the  expected system failure intensity.
The green line is the PM2 estimate of the system MTBF using a finite number of modes, and
the blue line is the PM2 estimate of the MTBF for an infinite number of modes.  The yellow
curve is the esimate of the system MTBF provided by the AMSAA-Crow model.  In Figure
20,  the series are not  statistically  fitted like the MTBF curves previously shown in Section
A.8.  In this case, the series are generated directly from planning parameters.  In particular,
the initial MTBF, and the goal MTBF were chosen as the realized values obtained during the
simulation replications.

H∗∗∗ ACTUAL − BLACK DOTS ∗L
ActualFR = TableA

FailureRateData = 8<;
TableA

SurfacedModes = Position@ReplicatedFOTPiT, _ ?H# ≤ t &LD;
m = Length@SurfacedModesD;

ρ = ‚
j=1

m

HH1 − Extract@ReplicatedFEFPiT, SurfacedModesDPjTL

Extract@ReplicatedFailureRatesPiT, SurfacedModesDPjTL +

‚
j=1

kB−m

Delete@ReplicatedFailureRatesPiT, SurfacedModesDPjT;

AppendTo@FailureRateData, ρD;
, 8t, 0, T, 1000<E;

FailureRateData, 8i, 1, Replications<E;

AverageActualFR = Mean@ActualFRD;
Actual = ListPlot@Transpose@8steps, 1ê AverageActualFR<D,

Frame → True,
FrameLabel → 8"Test Time", "MTBF"<,
PlotRange → 80, 1.25 Max@1ê AverageActualFRD<,
GridLines → Automatic,
PlotStyle → PointSize@.015D,
Background → GrayLevel@0.8D,
DisplayFunction → IdentityD;

H∗∗∗∗ PM2 ∗L
ActualMGs = Last@Transpose@1ê ActualFRDD;

β∞ = MapA 1
cccc
T

 
i

k
jjjjjj

1 − 10cccccc#
ccccccccccccccccccccccccccccccccc
.8 − H1 − 10cccccc# L

y

{
zzzzzz &, ActualMGsE;

βk =

MapA
i

k
jjjjjjx ê. FindRootA 1

cccccccccccccccccccccccccccccccccc
H1 + x TL 0.1ccccccccckB x +1

m 1 − i
k
jj 1

cccccccccc
0.8

y
{
zz i
k
jj1 −

10
ccccccc
#

y
{
zz, 8x, β∞<E

y

{
zzzzzzP1T &, ActualMGsE;
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pK =
0.1

ccccccccccccc
kB βk

;

hK@t_D =
0.1

ccccccccccccccccccccccccccccccccc
H1 + t βkLpK+1

;

ρK@t_D = H1 − 0.8L H0.1 − hK@tDL + hK@tD;
ρE@t_D = TableA

λB = ReplicatedFailureRatesPiT;
dB = ReplicatedFEFPiT;

9‚
j=1

kB

H1 − dBPjTL λBPjT + ‚
j=1

kB

dBPjT λBPjT Æ−λBPjT t =,

8i, 1, Replications<E;

H∗∗∗ CROW ∗L

βcrow = MapAx ê. FindRootA1êEλA,K m
T HGamma@1 + 1ccccx DLcccccccccccccccccccccccccccccccccccccccccccc

H Tccccccx # L
1êx

, 8x, 1<E &, ActualMGsE;

λcrow =
TH1−βcrowL

cccccccccccccccccccccccccccccccccccccccc
βcrow ActualMGs

;

ρcrow@t_D = λcrow βcrow tβcrow−1;

H∗∗∗ PLOTS ∗L
p1 = PlotA

9Mean@1ê ρE@tDD,

MeanA1 ì i
k
jjH1 − 0.8L i

k
jj0.1 −

0.1
cccccccccccccccccccccccccccccH1 + t ∗ β∞L

y
{
zz +

0.1
cccccccccccccccccccccccccccccH1 + t ∗ β∞L

y
{
zzE,

Mean@1ê ρK@tDD,
Mean@1ê ρcrow@tDD=, 8t, 0, T<,

PlotStyle → 8Hue@1D, Hue@0.6D, Hue@0.35D, Hue@0.15D<,
Frame → True,
Background → GrayLevel@0.9D,
FrameLabel −> 8"Test Time", "Exact MTBF"<,
PlotRange → 80, Max@ActualMGsD<,
GridLines → Automatic,
DisplayFunction → IdentityE;

Show@8p1, Actual<, DisplayFunction → $DisplayFunctionD;
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Figure 20.  System MTBF based on Planning Parameters.
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